Classifying the segmentation of customer value via RFM model and RS theory

نویسندگان

  • Ching-Hsue Cheng
  • You-Shyang Chen
چکیده

Data mining is a powerful new technique to help companies mining the patterns and trends in their customers data, then to drive improved customer relationships, and it is one of well-known tools given to customer relationship management (CRM). However, there are some drawbacks for data mining tool, such as neural networks has long training times and genetic algorithm is brute computing method. This study proposes a new procedure, joining quantitative value of RFM attributes and K-means algorithm into rough set theory (RS theory), to extract meaning rules, and it can effectively improve these drawbacks. Three purposes involved in this study in the following: (1) discretize continuous attributes to enhance the rough sets algorithm; (2) cluster customer value as output (customer loyalty) that is partitioned into 3, 5 and 7 classes based on subjective view, then see which class is the best in accuracy rate; and (3) find out the characteristic of customer in order to strengthen CRM. A practical collected C-company dataset in Taiwan’s electronic industry is employed in empirical case study to illustrate the proposed procedure. Referring to [Hughes, A. M. (1994). Strategic database marketing. Chicago: Probus Publishing Company], this study firstly utilizes RFM model to yield quantitative value as input attributes; next, uses K-means algorithm to cluster customer value; finally, employs rough sets (the LEM2 algorithm) to mine classification rules that help enterprises driving an excellent CRM. In analysis of the empirical results, the proposed procedure outperforms the methods listed in terms of accuracy rate regardless of 3, 5 and 7 classes on output, and generates understandable decision rules. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

ارائه روشی برای بخش‌بندی مشتریان با استفاده از مدل RFM در شرایط عدم قطعیت

The purpose of this study is presentation a method for clustering bank customers based on RFM model in terms of uncertainty. According to the proposed framework in this study after determination the parameter values of the RFM model, including recently exchange (R), frequency exchange (F), and monetary value of the exchange (M), grey theory is used to eliminate the uncertainty and customers are...

متن کامل

New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009